let f

Question:

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then

the range of $f$ is :

  1. (1) $\left[-\frac{1}{2}, \frac{1}{2}\right]$

  2. (2) $R-[-1,1]$

  3. (3) $R-\left[-\frac{1}{2}, \frac{1}{2}\right]$

  4. (4) $(-1,1)-\{0\}$


Correct Option: 1

Solution:

$f(x)=\frac{x}{1+x^{2}}, x \in R$

Let, $y=\frac{x}{1+x^{2}}$

$\Rightarrow \quad y x^{2}-x+y=0 \quad \Rightarrow \quad x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2}$

$\Rightarrow \quad 1-4 y^{2} \geq 0$

$\Rightarrow \quad 1 \geq 4 y^{2}$

$\Rightarrow \quad|y| \leq \frac{1}{2}$

$\Rightarrow \quad-\frac{1}{2} \leq y \leq \frac{1}{2}$

$\Rightarrow$ The range of $f$ is $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Leave a comment