Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a differentiable function satisfying
$f^{\prime}(3)+f^{\prime}(2)=0 .$ Then $\lim _{x \rightarrow 0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{\frac{1}{x}}$ is equal to :
Correct Option: 1
$I=\lim _{x \rightarrow 0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{\frac{1}{x}} \quad\left[1^{\infty}\right.$ form $]$
$\Rightarrow I=e^{\ell} 1$, where
$I_{1}=\lim _{x \rightarrow 0}\left(\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}-1\right)\right)\left(\frac{1}{x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)\left(\frac{f(3+x)-f(3)-f(2-x)+f(2)}{1+f(2-x)-f(2)}\right)$
$\left(\frac{0}{0}\right.$ form $)$
By L. Hospital Rule,
$I_{1}=\lim _{x \rightarrow 0}\left(\frac{f^{\prime}(3+x)+f^{\prime}(2-x)}{1}\right) \lim _{x \rightarrow 0}\left(\frac{1}{1+f(2-x)-f(2)}\right)$
$=f^{\prime}(3)+f^{\prime}(2)=0$
$\Rightarrow I=e=e=$