Let $f:[-1, \infty) \rightarrow[-1, \infty)$ be given by $f(x)=(x+1)^{2}-1, x \geq-1$. Show that $f$ is invertible. Also, find the set $S=\left\{x: f(x)=f^{-1}(x)\right\}$.
Injectivity : Let $\mathrm{x}$ and $\mathrm{y} \in[-1, \infty)$, such that
$f(x)=f(y)$
$\Rightarrow(x+1)^{2}-1=(y+1)^{2}-1$
$\Rightarrow(x+1)^{2}=(y+1)^{2}$
$\Rightarrow(x+1)=(y+1)$
$\Rightarrow x=y$
So, $f$ is a injection.
Surjectivity : Let $\mathrm{y} \in[-1, \infty)$.
Then, $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow(\mathrm{x}+1)^{2}-1=\mathrm{y}$
$\Rightarrow \mathrm{x}+1=\sqrt{\mathrm{y}+1}$
$\Rightarrow \mathrm{x}=\sqrt{\mathrm{y}+1}-1$
Clearly, $\mathrm{x}=\sqrt{\mathrm{y}+1}-1$ is real for all $\mathrm{y} \geq-1$.
Thus, every element $y \in[-1, \infty)$ has its pre-image $x \in[-1, \infty)$ given by $x=\sqrt{y+1}-1$.
$\Rightarrow f$ is a surjection.
So, $f$ is a bijection.
Hence, $f$ is invertible.
Let $f^{-1}(x)=y$ ...(1)
$\Rightarrow f(y)=x$
$\Rightarrow(y+1)^{2}-1=x$
$\Rightarrow(y+1)^{2}=x+1$
$\Rightarrow y+1=\sqrt{x+1}$
$\Rightarrow y=\pm \sqrt{x+1}-1$
$\Rightarrow f^{-1}(x)=\pm \sqrt{x+1}-1 \quad[$ from $(1)]$
$f(x)=f^{-1}(x)$
$\Rightarrow(x+1)^{2}-1=\pm \sqrt{x+1}-1$
$\Rightarrow(x+1)^{2}=\pm \sqrt{x+1}$
$\Rightarrow(x+1)^{4}=x+1$
$\Rightarrow(x+1)\left[(x+1)^{3}-1\right]=0$
$\Rightarrow x+1=0$ or $(x+1)^{3}-=0$
$\Rightarrow x=-1$ or $(x+1)^{3}=1$
$\Rightarrow x=-1$ or $x+1=1$
$\Rightarrow x=-1$ or $\mathrm{x}=0$
$\Rightarrow S=\{0,-1\}$