Question:
Let $f=\{(0,-1),(-1,3),(2,3),(3,5)\}$ be a function from $Z$ to $Z$ defined by $f(x)=a x+b$. Then, $(a, b)=$ ___________.
Solution:
Given: $f=\{(0,-1),(-1,-3),(2,3),(3,5)\}$ is a function from $Z$ to $Z$ defined by $f(x)=a x+b$
$f=\{(0,-1),(-1,-3),(2,3),(3,5)\}$ defined by $f(x)=a x+b$
$f(0)=-1$
$\Rightarrow a(0)+b=-1$
$\Rightarrow 0+b=-1$
$\Rightarrow b=-1$ ...(1)
$f(2)=3$
$\Rightarrow a(2)+b=3$
$\Rightarrow 2 a+b=3$
$\Rightarrow 2 a-1=3$ (From (1))
$\Rightarrow 2 a=3+1$
$\Rightarrow 2 a=4$
$\Rightarrow a=2$ ...(2)
Thus,
$a=2$ and $b=-1$
Hence, $(a, b)=(\underline{2}-1)$.
Disclaimer: The function f must be equal to f = {(0, –1), (–1, –3), (2, 3), (3, 5)}.