Let C be the locus of the mirror image of

Question:

Let $\mathrm{C}$ be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $\mathrm{y}=\mathrm{x}$. Then the equation of tangent to $\mathrm{C}$ at $\mathrm{P}(2,1)$ is :

  1. $x-y=1$

  2. $2 x+y=5$

  3. $x+3 y=5$

  4. $x+2 y=4$


Correct Option: 1

Solution:

Given $y^{2}=4 x$

Mirror image on $\mathrm{y}=\mathrm{x} \Rightarrow \mathrm{C}: \mathrm{x}^{2}=4 \mathrm{y}$

$2 x=4 \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{x}{2}$

$\left.\frac{d y}{d x}\right|_{P(2,1)}=\frac{2}{2}=1$

Equation of tangent at $(2,1)$

$\Rightarrow \mathrm{y}-1=1(\mathrm{x}-2)$

$\Rightarrow x-y=1$

Leave a comment