Let α and β be two roots of

Question:

Let $\alpha$ and $\beta$ be two roots of the equation $x^{2}+2 x+2=0$, then $\alpha^{15}+\beta^{15}$ is equal to :

  1. 512

  2. $-512$

  3. $-256$

  4. 256


Correct Option: , 3

Solution:

We have

$(x+1)^{2}+1=0$

$\Rightarrow(x+1)^{2}-(i)^{2}=0$

$\Rightarrow(x+1+i)(x+1-i)=0$

$\therefore \quad \mathrm{x}=\underset{\substack{a(k t)}}{-(1+\mathrm{i})}-\underset{\substack{\text { p(let) }}}{ }(1-\mathrm{i})$

So, $\quad \alpha^{15}+\beta^{15}=\left(\alpha^{2}\right)^{7} \alpha+\left(\beta^{2}\right)^{7} \beta$

$=-128(-i+1+i+1)$

$=-256$

Leave a comment