Let $A=\{x \in W: x<2\}, B=\{x \in N: 1 (i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$ (ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(i) Given:
$A=\{x \in W: x<2\}$
Here, W denotes the set of whole numbers (non – negative integers).
$\therefore A=\{0,1\}$
$[\because$ It is given that $x<2$ and the whole numbers which are less than 2 are $0 \& 1]$
$B=\{x \in N: 1 Here, N denotes the set of natural numbers. $\therefore B=\{2,3,4\}$ [ $\because$ It is given that the value of $x$ is greater than 1 and less than or equal to 4 ] and $C=\{3,5\}$ L. H. S $=A \times(B \cup C)$ By the definition of the union of two sets, $(B \cup C)=\{2,3,4,5\}$ $=\{0,1\} \times\{2,3,4,5\}$ Now, by the definition of the Cartesian product, Given two non – empty sets P and Q. The Cartesian product P × Q is the set of all ordered pairs of elements from P and Q, .i.e. $P \times Q=\{(p, q): p \in P, q \in Q\}$ $=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}$ R. H. S $=(A \times B) \cup(A \times C)$ Now, $A \times B=\{0,1\} \times\{2,3,4\}$ $=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}$ and $A \times C=\{0,1\} \times\{3,5\}$ $=\{(0,3),(0,5),(1,3),(1,5)\}$ Now, we have to find $(A \times B) \cup(A \times C)$ So, by the definition of the union of two sets, $(A \times B) \cup(A \times C)=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}$ = L. H. S $\therefore \mathrm{L} . \mathrm{H} . \mathrm{S}=\mathrm{R} . \mathrm{H} . \mathrm{S}$ is verified (ii) Given: $A=\{x \in W: x<2\}$ Here, W denotes the set of whole numbers (non – negative integers). $\therefore \mathrm{A}=\{0,1\}$ $[\because$ It is given that $x<2$ and the whole numbers which are less than 2 are 0,1$]$ $B=\{x \in N: 1 Here, N denotes the set of natural numbers. $\therefore \mathrm{B}=\{2,3,4\}$ $[\because$ It is given that the value of $x$ is greater than 1 and less than or equal to 4$]$ and $C=\{3,5\}$ L. H. S $=A \times(B \cap C)$ By the definition of the intersection of two sets, $(B \cap C)=\{3\}$ $=\{0,1\} \times\{3\}$ Now, by the definition of the Cartesian product, Given two non – empty sets P and Q. The Cartesian product P × Q is the set of all ordered pairs of elements from P and Q, .i.e. $P \times Q=\{(p, q): p \in P, q \in Q\}$ $=\{(0,3),(1,3)\}$ R. H. $S=(A \times B) \cap(A \times C)$ Now, $A \times B=\{0,1\} \times\{2,3,4\}$ $=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}$ and $A \times C=\{0,1\} \times\{3,5\}$ $=\{(0,3),(0,5),(1,3),(1,5)\}$ Now, we have to find $(A \times B) \cap(A \times C)$ So, by the definition of the intersection of two sets, $(A \times B) \cap(A \times C)=\{(0,3),(1,3)\}$ $=\mathrm{L} . \mathrm{H} . \mathrm{S}$ $\therefore \mathrm{L} . \mathrm{H} . \mathrm{S}=\mathrm{R} . \mathrm{H} . \mathrm{S}$ is verified