Let $A=\{x$ \&epsis; $R \mid-1 \leq x \leq 1\}$ and let $f: A \rightarrow A, g: A \rightarrow A$ be two functions defined by $f(x)=x^{2}$ and $g(x)=\sin (\pi x / 2)$. Show that $g^{-1}$ exists but $f^{-1}$ does not exist. Also, find $g-1$.
f is not one-one because
$f(-1)=(-1)^{2}=1$
and $f(1)=1^{2}=1$
$\Rightarrow-1$ and 1 have the same image under $f$.
$\Rightarrow f$ is not a bijection.
So, $f^{-1}$ does not exist.
Injectivity of g:
Let $x$ and $y$ be any two elements in the domain $(A)$, such that
$g(x)=g(y)$
$\Rightarrow \sin \left(\frac{\pi x}{2}\right)=\sin \left(\frac{\pi y}{2}\right)$
$\Rightarrow\left(\frac{\pi x}{2}\right)=\left(\frac{\pi y}{2}\right)$
$\Rightarrow x=y$
So, g is one-one.
Surjectivity of g:
Range of $g=\left[\sin \left(\frac{\pi(-1)}{2}\right), \sin \left(\frac{\pi(1)}{2}\right)\right]$
$=\left[\sin \left(\frac{-\pi}{2}\right), \sin \left(\frac{\pi}{2}\right)\right]=[-1,1]=A($ co-domain of $g)$
$\Rightarrow g$ is onto.
$\Rightarrow g$ is a bijection.
So, $g^{-1}$ exists.
Also,
let $g^{-1}(x)=y$ $\ldots(1)$
$\Rightarrow g(y)=x$
$\Rightarrow \sin \left(\frac{\pi y}{2}\right)=x$
$\Rightarrow\left(\frac{\pi y}{2}\right)=\sin ^{-1} x$
$\Rightarrow y=\frac{2}{\pi} \sin ^{-1} x$
$\Rightarrow g^{-1}(x)=\frac{2}{\pi} \sin ^{-1} x$ $[$ from (1) $]$