Let $A=\mathbf{R}-\{3\}$ and $B=\mathbf{R}-\{1\} .$ Consider the function $f: A \rightarrow B$ defined by
$f(x)=\left(\frac{x-2}{x-3}\right) .$ Is $f$ one-one and onto? Justify your answer.
$A=\mathbf{R}-\{3\}, B=\mathbf{R}-\{1\}$
$f: \mathrm{A} \rightarrow \mathrm{B}$ is defined as $f(x)=\left(\frac{x-2}{x-3}\right)$.
Let $x, y \in$ A such that $f(x)=f(y)$.
$\Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3}$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow-3 x-2 y=-3 y-2 x$
$\Rightarrow 3 x-2 x=3 y-2 y$
$\Rightarrow x=y$
∴ f is one-one.
Let $y \in B=\mathbf{R}-\{1\} .$ Then, $y \neq 1$.
The function f is onto if there exists x ∈A such that f(x) = y.
Now,
$f(x)=y$
$\Rightarrow \frac{x-2}{x-3}=y$
$\Rightarrow x-2=x y-3 y$
$\Rightarrow x(1-y)=-3 y+2$
$\Rightarrow x=\frac{2-3 y}{1-y} \in \mathrm{A} \quad[y \neq 1]$
Thus, for any $y \in \mathrm{B}$, there exists $\frac{2-3 y}{1-y} \in \mathrm{A}$ such that
$f\left(\frac{2-3 y}{1-y}\right)=\frac{\left(\frac{2-3 y}{1-y}\right)-2}{\left(\frac{2-3 y}{1-y}\right)-3}=\frac{2-3 y-2+2 y}{2-3 y-3+3 y}=\frac{-y}{-1}=y .$
∴ f is onto.
Hence, function f is one-one and onto.