Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a function defined by $f(x)=\frac{x-1}{x-2}$, show that $f$ is one-one and onto. Find $f^{-}$.
Given: $f(x)=\frac{x-1}{x-2}$
To show f is one-one:
Let $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{x_{1}-1}{x_{1}-2}=\frac{x_{2}-1}{x_{2}-2}$
$\Rightarrow\left(x_{1}-1\right)\left(x_{2}-2\right)=\left(x_{2}-1\right)\left(x_{1}-2\right)$
$\Rightarrow x_{1} x_{2}-2 x_{1}-x_{2}+2=x_{1} x_{2}-2 x_{2}-x_{1}+2$
$\Rightarrow-2 x_{1}-x_{2}=-2 x_{2}-x_{1}$
$\Rightarrow-2 x_{1}+x_{1}=-2 x_{2}+x_{2}$
$\Rightarrow-x_{1}=-x_{2}$
$\Rightarrow x_{1}=x_{2}$
Hence, $f$ is one-one.
To show $f$ is onto:
Let $y \in B$
$\therefore y=f(x)$
$\Rightarrow y=\frac{x-1}{x-2}$
$\Rightarrow y(x-2)=x-1$
$\Rightarrow x y-2 y=x-1$
$\Rightarrow x y-x=2 y-1$
$\Rightarrow x(y-1)=2 y-1$
$\Rightarrow x=\frac{2 y-1}{y-1}$
Thus, for every value of $y$ in $R-\{1\}$, there exists a pre-image $x=\frac{2 y-1}{y-1}$ in $R-\{2\}$.
Hence, $f$ is onto.
Since, $f$ is one-one and onto
Therefore, $f$ is invertible with $f^{-1}(y)=\frac{2 y-1}{y-1}$.
Hence, $f^{-1}(x)=\frac{2 x-1}{x-1}$.