Let A be a symmetric matrix of order 2 with

Question:

Let $\mathrm{A}$ be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of $\mathrm{A}^{2}$ is 1 , then the possible number of such matrices is:

  1. (1) 6

  2. (2) 1

  3. (3) 4

  4. (4) 12


Correct Option: , 3

Solution:

Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$

$A^{2}=\left[\begin{array}{ll}a^{L} & b \\ b & c\end{array}\right]\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{ll}a^{2}+b^{2} & a b+b c \\ a b+b c & c^{2}+b^{2}\end{array}\right]$

$=a^{2}+2 b^{2}+c^{2}=1$

$a=1, b=0, c=0$

$a=0, b=0, c=1$

$a=-1, b=0, c=0$

$c=-1, b=0, a=0$

Leave a comment