Let A be a set of all 4-digit natural numbers

Question:

Let $\mathrm{A}$ be a set of all 4-digit natural numbers whose exactly one digit is 7 . Then the probability that a randomly chosen element of $A$ leaves remainder 2 when divided by 5 is:

  1. $\frac{2}{9}$

  2. $\frac{122}{297}$

  3. $\frac{97}{297}$

  4.  $\frac{1}{5}$


Correct Option: , 3

Solution:

$\mathrm{n}(\mathrm{s})=\mathrm{n}$ (when 7 appears on thousands place)

$+\mathrm{n}(7$ does not appear on thousands place)

$=9 \times 9 \times 9+8 \times 9 \times 9 \times 3$

$=33 \times 9 \times 9$

$\mathrm{n}(\mathrm{E})=\mathrm{n}$ (last digit $7 \& 7$ appears once) 

$+\mathrm{n}$ (last digit 2 when 7 appears once)

$=8 \times 9 \times 9+(9 \times 9+8 \times 9 \times 2)$

$\therefore P(E)=\frac{8 \times 9 \times 9+9 \times 25}{33 \times 9 \times 9}=\frac{97}{297}$

Leave a comment