Let A , B , C and D be four non - empaty sets,

Question:

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$, then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is :

  1. If $\mathrm{A} \subseteq \mathrm{C}$, then $\mathrm{B} \subset \mathrm{A}$ or $\mathrm{D} \subset \mathrm{B}$

  2. If $\mathrm{A} \nsubseteq \subseteq \mathrm{C}$, then $\mathrm{A} \nsubseteq \subseteq \mathrm{B}$ or $\mathrm{B} \not \subseteq \mathrm{D}$

  3. If $\mathrm{A} \nsubseteq \subseteq \mathrm{C}$, then $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$

  4. If $\mathrm{A} \nsubseteq \mathrm{C}$, then $\mathrm{A} \nsubseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D}$


Correct Option: , 2

Solution:

Leave a comment