Question:
Let A, B and C be the sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C. show that B = C.
Solution:
Let, A, B and C be the sets such that and.
To show: B = C
Let x ∈ B
$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$
$\Rightarrow x \in \mathrm{A} \cup \mathrm{C} \quad[\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}]$
$\Rightarrow x \in \mathrm{A}$ or $x \in \mathrm{C}$
Case I
x ∈ A
Also, x ∈ B
$\therefore x \in A \cap B$
$\Rightarrow x \in \mathrm{A} \cap \mathrm{C} \quad[\because \mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}]$
$\therefore x \in \mathrm{A}$ and $x \in \mathrm{C}$
$\therefore x \in \mathrm{C}$
$\therefore B \subset C$
Similarly, we can show that $\mathrm{C} \subset \mathrm{B}$.
$\therefore \mathrm{B}=\mathrm{C}$