Let $A, B$ and $C$ be sets such that $\phi \neq A \cap B \subseteq C$. Then which of the following statements is not true?
Correct Option: 1
for $\mathrm{A}=\mathrm{C}, \mathrm{A}-\mathrm{C}=\phi$
$\Rightarrow \phi \subseteq B$
But $\mathrm{A} \nsubseteq \mathrm{B}$
$\Rightarrow$ ontion 1 is NOT true
Let $x \in(C x \in(C \cup A) \cap(C \cup B)$
$\Rightarrow \mathrm{x} \in(\mathrm{C} \cup \mathrm{A})$ and $\mathrm{x} \in(\mathrm{C} \cup \mathrm{B})$
$\Rightarrow(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{A})$ and $(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{B})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{C} \quad($ as $\mathrm{A} \cup \mathrm{B} \subseteq \mathrm{C})$
$\Rightarrow \mathrm{x} \in \mathrm{C}$
$\Rightarrow(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B}) \subseteq \mathrm{C}$ ...........(1)
Now $\mathrm{x} \in \mathrm{C} \Rightarrow \mathrm{x} \in(\mathrm{C} \cup \mathrm{A})$ and $\mathrm{x} \in(\mathrm{C} \cup \mathrm{B})$
$\Rightarrow x \in(C \cup A) \cap(C \cup B)$
$\Rightarrow \mathrm{C} \subseteq(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})$ ........(2)
$\Rightarrow$ from $(1)$ and $(2)$
$\mathrm{C}=(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})$
$\Rightarrow$ option 2 is true
Let $\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}$
$\Rightarrow x \in(A-B)$
$\Rightarrow x \in C$ $($ as $\mathrm{A}-\mathrm{B} \subseteq \mathrm{C})$
Let $x \in A$ and $x \in B$
$\Rightarrow x \in(A \cap B)$
$\Rightarrow x \in C$ (as $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{C})$
Hence $\quad x \in A \Rightarrow x \in C$
$\Rightarrow \mathrm{A} \subseteq \mathrm{C}$
$\Rightarrow$ Option 3 is true
as $\mathrm{C} \supseteq(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{B} \cap \mathrm{C} \supseteq(\mathrm{A} \cap \mathrm{B})$
as $A \cap B \neq \phi$
$\Rightarrow \quad \mathrm{B} \cap \mathrm{C} \neq \phi$
$\Rightarrow$ Option 4 is true.