Let A, B and C be sets such that

Question:

Let $A, B$ and $C$ be sets such that $\phi \neq A \cap B \subseteq C$. Then which of the following statements is not true?

  1. If $(\mathrm{A}-\mathrm{C}) \subseteq \mathrm{B}$, then $\mathrm{A} \subseteq \mathrm{B}$

  2. $(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})=\mathrm{C}$

  3. If $(\mathrm{A}-\mathrm{B}) \subseteq \mathrm{C}$, then $\mathrm{A} \subseteq \mathrm{C}$

  4. $\mathrm{B} \cap \mathrm{C} \neq \phi$


Correct Option: 1

Solution:

for $\mathrm{A}=\mathrm{C}, \mathrm{A}-\mathrm{C}=\phi$

$\Rightarrow \phi \subseteq B$

But $\mathrm{A} \nsubseteq \mathrm{B}$

$\Rightarrow$ ontion 1 is NOT true

Let $x \in(C x \in(C \cup A) \cap(C \cup B)$

$\Rightarrow \mathrm{x} \in(\mathrm{C} \cup \mathrm{A})$ and $\mathrm{x} \in(\mathrm{C} \cup \mathrm{B})$

$\Rightarrow(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{A})$ and $(\mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{B})$

$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in(\mathrm{A} \cap \mathrm{B})$

$\Rightarrow \mathrm{x} \in \mathrm{C}$ or $\mathrm{x} \in \mathrm{C} \quad($ as $\mathrm{A} \cup \mathrm{B} \subseteq \mathrm{C})$

$\Rightarrow \mathrm{x} \in \mathrm{C}$

$\Rightarrow(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B}) \subseteq \mathrm{C}$ ...........(1)

Now $\mathrm{x} \in \mathrm{C} \Rightarrow \mathrm{x} \in(\mathrm{C} \cup \mathrm{A})$ and $\mathrm{x} \in(\mathrm{C} \cup \mathrm{B})$

$\Rightarrow x \in(C \cup A) \cap(C \cup B)$

$\Rightarrow \mathrm{C} \subseteq(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})$ ........(2)

$\Rightarrow$ from $(1)$ and $(2)$

$\mathrm{C}=(\mathrm{C} \cup \mathrm{A}) \cap(\mathrm{C} \cup \mathrm{B})$

$\Rightarrow$ option 2 is true

Let $\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}$

$\Rightarrow x \in(A-B)$

$\Rightarrow x \in C$       $($ as $\mathrm{A}-\mathrm{B} \subseteq \mathrm{C})$

Let $x \in A$ and $x \in B$

$\Rightarrow x \in(A \cap B)$

$\Rightarrow x \in C$                (as $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{C})$

Hence $\quad x \in A \Rightarrow x \in C$

$\Rightarrow \mathrm{A} \subseteq \mathrm{C}$

$\Rightarrow$ Option 3 is true

as                     $\mathrm{C} \supseteq(\mathrm{A} \cap \mathrm{B})$

$\Rightarrow \mathrm{B} \cap \mathrm{C} \supseteq(\mathrm{A} \cap \mathrm{B})$

as                      $A \cap B \neq \phi$

$\Rightarrow \quad \mathrm{B} \cap \mathrm{C} \neq \phi$

$\Rightarrow$ Option 4 is true.

 

Leave a comment