Question:
Let A and B be two mutually exclusive events of a random experiment such that P(not A) = 0.65 and P(A or B) = 0.65, find P(B).
Solution:
Given : A and B are mutually exclusive events
$\mathrm{P}(\operatorname{not} \mathrm{A})=\mathrm{P}\left({ }^{\bar{A}}\right)=0.65, \mathrm{P}(\mathrm{A}$ or $\mathrm{B})=0.65$
To find : P(B)
Formula used : $\mathrm{P}(\mathrm{A})=1-\mathrm{P}(\bar{A})$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
For mutually exclusive events $A$ and $B, P(A$ and $B)=0$
$P(A)=1-P($ not $A)$
$P(A)=1-0.65$
$P(A)=0.35$
Substituting in the above formula we get,
$0.65=0.35+P(B)$
$P(B)=0.65-0.35$
$P(B)=0.30$
P(B) = 0.30