Let A and B be two invertible matrices of order 3 X 3.

Question:

Let $A$ and $B$ be two invertible matrices of order $3 \times 3$. If $\operatorname{det}\left(A B A^{T}\right)=8$ and $\operatorname{det}\left(A B^{-1}\right)=8$, then $\operatorname{det}\left(\mathrm{BA}^{-1} \mathrm{~B}^{\mathrm{T}}\right)$ is equal to :-

  1. 16

  2. $\frac{1}{16}$

  3. $\frac{1}{4}$

  4. 1


Correct Option: 2,

Solution:

$|\mathrm{A}|^{2} \cdot|\mathrm{B}|=8$ and $\frac{|\mathrm{A}|}{|\mathrm{B}|}=8 \Rightarrow|\mathrm{A}|=4$ and $|\mathrm{B}|=\frac{1}{2}$

$\therefore \operatorname{det}\left(\mathrm{BA}^{-1} \cdot \mathrm{B}^{\mathrm{T}}\right)=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}$

Leave a comment