Let A = [aij] be a square matrix

Question:

Let $A=\left[a_{i j}\right]$ be a square matrix of order 3 with $|A|=2$ and let $C=\left[c_{i j}\right]$, where $c_{i j}=$ cofactor of $a_{i j}$ in $A$. Then, $|C|=$__________

Solution:

Given:

$|A|=2$

Order of $A=3$

As we know,

$|\operatorname{adj}(A)|=|A|^{n-1} \quad$ where $n$ is the order of $A$

Also, $\operatorname{adj}(A)=C^{T}$

$\Rightarrow|\operatorname{adj}(A)|=\left|C^{T}\right|$

$\Rightarrow|\operatorname{adj}(A)|=|C| \quad\left(\because\left|C^{T}\right|=|C|\right)$

$\Rightarrow|A|^{n-1}=|C|$

$\Rightarrow|C|=|A|^{n-1}$

$\Rightarrow|C|=|A|^{3-1}$      $(\because$ order of $A=3)$

$\Rightarrow|C|=|A|^{2}$

$\Rightarrow|C|=2^{2}$            $(\because|A|=2)$

$\Rightarrow|C|=4$

Hence, $|C|=\underline{4}$.

Leave a comment