Let A = { 2, 3, 4, 5, ...... , 30} and

Question:

Let $\mathrm{A}=\{2,3,4,5, \ldots ., 30\}$ and ' $\simeq$ ' be an equivalence relation on $\mathrm{A} \times \mathrm{A}$, defined by $(a, b) \simeq(c, d)$, if and only if $a d=b c$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :

  1. 5

  2. 6

  3. 8

  4. 7


Correct Option: , 4

Solution:

$A=\{2,3,4,5, \ldots ., 30\}$

$(a, b) \simeq(c, d) \quad \Rightarrow \quad a d=b c$

$(4,3) \simeq(\mathrm{c}, \mathrm{d}) \quad \Rightarrow \quad 4 \mathrm{~d}=3 \mathrm{c}$

$\Rightarrow \frac{4}{3}=\frac{\mathrm{c}}{\mathrm{d}}$

$\frac{\mathrm{c}}{\mathrm{d}}=\frac{4}{3} \quad \& \mathrm{c}, \mathrm{d} \in\{2,3, \ldots \ldots, 30\}$

$(\mathrm{c}, \mathrm{d})=\{(4,3),(8,6),(12,9),(16,12),(20,$,

$15),(24,18),(28,21)\}$

No. of ordered pair $=7$

Leave a comment