Question:
Let $A=\{1,3,5,7\}$ and $B=\{2,4,6,8\}$
Let $R=\{(x, y),: x \in A, y \in B$ and $x>y\} .$
(i) Write $\mathbf{R}$ in roster form.
(ii) Find dom (R) and range (R).
(iii) Depict $\mathbf{R}$ by an arrow diagram.
Solution:
Given: A = {1, 3, 5, 7} and B = {2, 4, 6, 8}
(i) $R=\{(x, y),: x \in A, y \in B$ and $x>y\}$
So, R in Roster Form,
R = {(3, 2), (5, 2), (5, 4), (7, 2), (7, 4), (7, 6)}
(ii) $\operatorname{Dom}(\mathrm{R})=\{3,5,7\}$
Range(R) = {2, 4, 6}
(iii)