Question:
Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by
{(a, b) : a, b ∈ A, b is exactly divisible by a}
(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R.
Solution:
A = [1, 2, 3, 4, 5, 6]
R = {(a, b) : a, b ∈ A, b is exactly divisible by a}
(i) Here,
2 is divisible by 1 and 2.
3 is divisible by 1 and 3.
4 is divisible by 1 and 4.
5 is divisible by 1 and 5.
6 is divisible by 1, 2, 3 and 6.
∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}
(ii) Domain (R) = {1, 2, 3, 4, 5, 6}
(iii) Range (R) = {1, 2, 3, 4, 5, 6}