Let
$A=\left\{0 \in\left(-\frac{\pi}{2}, \pi\right): \frac{3+2 i \sin \theta}{1-2 i \sin \theta}\right.$ is purely imaginary $\}$
Then the sum of the elements in $\mathrm{A}$ is :
Correct Option: 2,
Given $\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}$ is purely img
so real part becomes zero.
$\mathrm{z}=\left(\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}\right) \times\left(\frac{1+2 \mathrm{i} \sin \theta}{1+2 \mathrm{i} \sin \theta}\right)$
$z=\frac{\left(3-4 \sin ^{2} \theta\right)+i(8 \sin \theta)}{i+4 \sin ^{2} \theta}$
Now $\operatorname{Re}(\mathrm{z})=0$
$\frac{3-4 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0$
$\sin ^{2} \theta=\frac{3}{4}$
$\sin \theta=\pm \frac{\sqrt{3}}{2} \Rightarrow \theta=--\frac{\pi}{3}, \frac{\pi}{3}, \frac{2 \pi}{3}$
$\because \quad \theta \in\left(-\frac{\pi}{2}, \pi\right)$
then sum of the elements in $\mathrm{A}$ is
$-\frac{\pi}{3}+\frac{\pi}{3}+\frac{2 \pi}{3}=\frac{2 \pi}{3}$