K, L, M and N are points on the sides AB, BC, CD and DA respectively of a square ABCD such that AK = BL = CM = DN. Prove that KLMN is a square.
Given: In square ABCD, AK = BL = CM = DN.
To prove: KLMN is a square.
Proof:
In square ABCD,
AB = BC = CD = DA (All sides of a square are equal.)
And, AK = BL = CM = DN (Given)
So, AB
In $\Delta N A K$ and $\Delta K B L$,
$\angle N A K=\angle K B L=90^{\circ}$ (Each angle of a square is a right angle.)
$A K=B L$ (Given)
$A N=K B$ [From (1)]
So, by SAS congruence criteria,
$\Delta N A K \cong \Delta K B L$
$\Rightarrow N K=K L \quad(\mathrm{CPCT}) \quad \ldots(2)$
Similarly,
$\Delta M D N \cong \Delta N A K$
$\Delta D N M \cong C M L$
$\Delta M C L \cong L B K$
$\Rightarrow M N=N K$ and $\angle D N M=\angle K N A \quad$ (CPCT) $\quad$...(3)
$M N=J M$ and $\angle D N M=\angle C M L \quad$ (CPCT) $\quad \ldots$ (4)
$M L=L K$ and $\angle C M L=\angle B L K \quad$ (CPCT) $\quad \ldots$ (5)
From (2), (3), (4) and (5), we get
NK = KL = MN = ML ...(6)
And, $\angle D N M=\angle A K N=\angle K L B=L M C$
Now,
In $\Delta N A K$,
$\angle N A K=90^{\circ}$
Let $\angle A K N=x^{\circ}$
So, $\angle D N K=90^{\circ}+x^{\circ}$ (Exterior angles equals sum of interior opposite angles.)
$\Rightarrow \angle D N M+\angle M N K=90^{\circ}+x^{\circ}$
$\Rightarrow x^{\circ}+\angle M N K=90^{\circ}+x^{\circ}$
$\Rightarrow \angle M N K=90^{\circ}$
Similarly,
$\angle N K L=\angle K L M=\angle L M N=90^{\circ}$ (7)
Using (6) and (7), we get
All sides of quadrikateral KLMN are equal and all angles are 90
So, KLMN is a square.