It x and y vary inversely, fill in the following blanks:
(i)
(ii)
(iii)
(i) Since $x$ and $y$ vary inversely, we have :
$x y=k$
For $x=16$ and $y=6$, we have :
$16 \times 6=k$
$\Rightarrow k=96$
For $x=12$ and $k=96$, we have :
$x y=k$
$\Rightarrow 12 y=96$
$\Rightarrow y=\frac{96}{12}$
$=8$
For $y=4$ and $k=96$, we have :
$x y=k$
$\Rightarrow 4 x=96$
$\Rightarrow x=\frac{96}{4}$
$=24$
For $x=8$ and $k=96$, we have :
$x y=k$
$\Rightarrow 8 y=96$
$\Rightarrow y=\frac{96}{8}$
$=12$
For $y=0.25$ and $k=96$, we have :
$x y=k$
$\Rightarrow 0.25 x=96$
$\Rightarrow x=\frac{96}{0.25}$
$=384$
(ii) Since $x$ and $y$ vary inversely, we have:
$x y=k$
For $x=16$ and $y=4$, we have:
$16 \times 4=k$
$\Rightarrow k=64$
For $x=32$ and $k=64$, we have :
$x y=k$
$\Rightarrow 32 y=64$
$\Rightarrow y=\frac{64}{32}$
$=2$
For $x=8$ and $k=64$
$x y=k$
$\Rightarrow 8 y=64$
$\Rightarrow y=\frac{64}{8}$
$=8$
(iii) Since $x$ and $y$ vary inversely, we have :
$x y=k$
For $x=9$ and $y=27$
$9 \times 27=k$
$\Rightarrow k=243$
For $y=9$ and $k=243$, we have :
$x y=k$
$\Rightarrow 9 x=243$
$\Rightarrow y=\frac{243}{9}$
$=27$
For $x=81$ and $k=243$, we have :
$x y=k$
$\Rightarrow 81 y=243$
$\Rightarrow y=\frac{243}{81}$
$=3$