Question:
It tan A = cot (A + 10°), where (A + 10°) is acute then find ∠A.
Solution:
Given: tanA = cot(A + 10°)
$\tan A=\cot \left(A+10^{\circ}\right)$
$\Rightarrow \cot \left(90^{\circ}-A\right)=\cot \left(A+10^{\circ}\right) \quad\left(\because \tan \theta=\cot \left(90^{\circ}-\theta\right)\right)$
$\Rightarrow 90^{\circ}-A=A+10^{\circ}$
$\Rightarrow 90^{\circ}-10^{\circ}=A+A$
$\Rightarrow 2 A=80^{\circ}$
$\Rightarrow A=\frac{80^{\circ}}{2}$
$\Rightarrow A=40^{\circ}$
Hence, $\angle A=40^{\circ}$.