Is every differentiable function continuous?
Yes, if a function is differentiable at a point then it is necessary continuous at that point.
Proof : Let a function $f(x)$ be differentiable at $x=c$. Then,
$\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely.
Let $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)$
In order to prove that $f(x)$ is continous at $x=c$, it is sufficient to show that $\lim f(x)=f(c)$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left\{\left(\frac{f(x)-f(c)}{x-c}\right)(x-c)+f(c)\right\}$
$\Rightarrow \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left[\left\{\frac{f(x)-f(c)}{x-c}\right\}(x-c)\right]+f(c)$
$\Rightarrow \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left\{\frac{f(x)-f(c)}{x-c}\right\} \cdot \lim _{x \rightarrow c}(x-c)+f(c)$
$\Rightarrow \lim _{x \rightarrow c} f(x)=f^{\prime}(c) \times 0+f(c)$
$\Rightarrow \lim _{x \rightarrow c} f(x)=f(c)$
Hence, $f(x)$ is continuous at $x=c$.