$\lim _{n \rightarrow \infty}\left(1+\frac{1+\frac{1}{2}+\ldots \ldots++\frac{1}{n}}{n^{2}}\right)^{n}$ is equal to :
Correct Option: , 3
It is $1^{\infty}$ form
$\mathrm{L}=\mathrm{e}^{\lim _{z \rightarrow \infty}}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots+\frac{1}{n}}{n}\right)$
$S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{15}\right)$
$S<1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right) \cdots \cdots \cdots+\underbrace{\left(\frac{1}{2^{P}}+\ldots \ldots \ldots+\frac{1}{2^{P}}\right)}_{2^{\mathrm{p}} \text { times }})$
$S<1+1+1+1+\ldots \ldots \ldots+1$
$\$ \mathrm{~S} \therefore \quad L=e^{\lim _{n \rightarrow \infty} \frac{(P+1)}{2^{P}}}$
$\Rightarrow L=e^{\circ}=1$