Question:
Is −150 a term of the AP 11, 8, 5, 2, ...?
Solution:
The given AP is 11, 8, 5, 2, ... .
Here, a = 11 and d = 8 − 11 = −3
Let the nth term of the given AP be −150. Then,
$a_{n}=-150$
$\Rightarrow 11+(n-1) \times(-3)=-150 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3 n+14=-150$
$\Rightarrow-3 n=-164$
$\Rightarrow n=\frac{164}{3}=54 \frac{2}{3}$
But, the number of terms cannot be a fraction.
Hence, −150 is not a term of the given AP.