Question:
lonic product of water at $310 \mathrm{~K}$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?
Solution:
Ionic product,
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
Let $\left[\mathrm{H}^{+}\right]=x$
Since $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], K_{\mathrm{w}}=x^{2} .$
$\Rightarrow K_{w}$ at $310 \mathrm{~K}$ is $2.7 \times 10^{-14}$
$\therefore 2.7 \times 10^{-14}=x^{2}$
$\Rightarrow x=1.64 \times 10^{-7}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=1.64 \times 10^{-7}$
$\Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left[1.64 \times 10^{-7}\right]$
$=6.78$
Hence, the pH of neutral water is 6.78.