Question:
Insert two geometric means between 9 and 243.
Solution:
To find: Two geometric Mean
Given: The numbers are 9 and 243
Formula used: (i) $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$, where $n$ is the number of
geometric mean
Let $G_{1}$ and $G_{2}$ be the three geometric mean
Then $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
$\Rightarrow r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
$\Rightarrow r=\left(\frac{243}{9}\right)^{\frac{1}{2+1}}$
$\Rightarrow r=27^{\frac{1}{3}}$
⇒ r = 3
$G_{1}=a r=9 \times 3=27$
$G_{2}=a r^{2}=9 \times 3^{2}=9 \times 9=81$
Two geometric mean between 9 and 243 are 27 and 81.