Insert six arithmetic means between 11 and -10
To find: Six arithmetic means between 11 and -10
Formula used: (i) $d=\frac{b-a}{n+1}$, where, $d$ is the common difference
n is the number of arithmetic means
(ii) $A_{n}=a+n d$
We have 11 and -10
Using Formula, $d=\frac{b-a}{n+1}$
$d=\frac{-10-(11)}{6+1}$
$d=\frac{-21}{7}$
$d=-3$
Using Formula, $A_{n}=a+n d$
First arithmetic mean, $A_{1}=a+d$
$=11+(-3)$
$=8$
Second arithmetic mean, $\mathrm{A}_{2}=\mathrm{a}+2 \mathrm{~d}$
$=11+2(-3)$
$=11+(-6)$
$=5$
Third arithmetic mean, $\mathrm{A}_{3}=\mathrm{a}+3 \mathrm{~d}$
$=11+3(-3)$
$=11+(-9)$
$=2$
Fourth arithmetic mean, $\mathrm{A}_{4}=\mathrm{a}+4 \mathrm{~d}$
$=11+4(-3)$
$=11+(-12)$
$=-1$
Fifth arithmetic mean, $A_{5}=a+5 d$
$=11+5(-3)$
$=11+(-15)$
$=-4$
Sixth arithmetic mean, $A_{6}=a+6 d$
$=11+6(-3)$
$=11+(-18)$
$=-7$
Ans) The six arithmetic means between 11 and $-10$ are $8,5,2,-1,-4$ and $-7$.