Insert arithmetic means between 16 and 65 such that the 5th AM is 51. Find the number of arithmetic means.
To find: The number of arithmetic means
Given: (i) The numbers are 16 and 65
(ii) $5^{\text {th }}$ arithmetic mean is 51
Formula used: (i) $d=\frac{b-a}{n+1}$, where, $d$ is the common difference
n is the number of arithmetic means
(ii) $A_{n}=a+n d$
We have 16 and 65,
Using Formula, $d=\frac{b-a}{n+1}$
$d=\frac{65-16}{n+1}$
$d=\frac{49}{n+1}$
Using Formula, $A_{n}=a+n d$
Fifth arithmetic mean, $A_{5}=a+5 d$
$=16+5\left(\frac{49}{n+1}\right)$
$A_{5}=16+\left(\frac{245}{n+1}\right)$
$\mathrm{A}_{5}=51$ (Given)
Therefore, $A_{5}=16+\left(\frac{245}{n+1}\right)=51$
$\Rightarrow 16+\left(\frac{245}{n+1}\right)=51$
$\Rightarrow\left(\frac{245}{n+1}\right)=51-16$
$\Rightarrow\left(\frac{245}{n+1}\right)=35$
$\Rightarrow 245=35 n+35$
$\Rightarrow 210=35 n$
$\Rightarrow n=6$
The number of arithmetic means are 6.
Using Formula, $d=\frac{b-a}{n+1}$
$d=\frac{65-16}{6+1}$
$d=\frac{49}{7}$
$d=7$
Using Formula, $A_{n}=a+n d$
First arithmetic mean, $\mathrm{A}_{1}=\mathrm{a}+\mathrm{d}$
$=16+7$
$=23$
Second arithmetic mean, $\mathrm{A}_{2}=\mathrm{a}+2 \mathrm{~d}$
$=16+2(7)$
$=16+14$
$=30$
Third arithmetic mean, $A_{3}=a+3 d$
$=16+3(7)$
$=16+21$
= 37
Fourth arithmetic mean, $\mathrm{A}_{4}=\mathrm{a}+4 \mathrm{~d}$
$=16+4(7)$
$=16+28$
$=44$
Fifth arithmetic mean, $\mathrm{A}_{5}=\mathrm{a}+5 \mathrm{~d}$
$=16+5(7)$
$=16+35$
$=51$
Sixth arithmetic mean, $A_{6}=a+6 d$
$=16+6(7)$
$=16+42$
$=58$
Ans) The six arithmetic means between 1 and 65 are $23,30,37,44,51$ and $58 .$