Question:
Ine solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}$ $(x \neq 0)$ with $y(1)=1$, is:
Correct Option: , 3
Solution:
$\frac{d y}{d x}+\frac{2}{x} y=x$ and $y(1)=1$ (given)
Since, the above differential equation is the linear
differential equation, then $I . F=e^{\int \frac{2}{x} d x}=x^{2}$
Now, the solution of the linear differential equation
$y \times x^{2}=\int x^{3} d x$
$\Rightarrow y x^{2}=\frac{x^{4}}{4}+C$
$\because y(1)=1$
$\therefore 1 \times 1=\frac{1}{4}+C \Rightarrow C=\frac{3}{4}$
$\therefore$ solution becomes
$y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$