Question:
In what time will Rs 4400 become Rs 4576 at 8% per annum interest compounded half-yearly?
Solution:
Let the time period be $\mathrm{n}$ years.
$\mathrm{R}=8 \%=4 \%$ (Half $-$ yearly $)$
Thus, we have :
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$
$4,576=4,400\left(1+\frac{4}{100}\right)^{\mathrm{n}}$
$4,576=4,400(1.04)^{\mathrm{n}}$
$(1.04)^{\mathrm{n}}=\frac{4,576}{4,000}$
$(1.04)^{\mathrm{n}}=1.04$
$(1.04)^{\mathrm{n}}=1.04^{1}$
On comparing both the sides, we get:
n = 1
Thus, the required time is half a year.