In triangle ABC, prove the following:
$\frac{\cos 2 A}{a^{2}}-\frac{\cos 2 B}{b^{2}}-\frac{1}{a^{2}}-\frac{1}{b^{2}}$
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
Then,
Consider the LHS of the equation $\frac{\cos 2 A}{a^{2}}-\frac{\cos 2 B}{b^{2}}-\frac{1}{a^{2}}-\frac{1}{b^{2}}$.
$\mathrm{LHS}=\frac{\cos 2 A}{a^{2}}-\frac{\cos 2 B}{b^{2}}$
$=\frac{1-2 \sin ^{2} A}{a^{2}}-\frac{1-2 \sin ^{2} B}{b^{2}}$
$=\frac{1-2 \frac{a^{2}}{k^{2}}}{a^{2}}-\frac{1-2 \frac{b^{2}}{k^{2}}}{b^{2}}$
$=\frac{\frac{k^{2}-2 a^{2}}{k^{2}}}{a^{2}}-\frac{\frac{k^{2}-2 b^{2}}{k^{2}}}{b^{2}}$
$=\frac{k^{2} b^{2}-2 a^{2} b^{2}-k^{2} a^{2}+2 a^{2} b^{2}}{a^{2} b^{2}}$
$=\frac{k^{2}\left(b^{2}-a^{2}\right)}{k^{2} a^{2} b^{2}}$
$=\frac{1}{a^{2}}-\frac{1}{b^{2}}=\mathrm{RHS}$
Hence proved.