In triangle ABC, prove the following:
$\frac{a-b}{a+b}=\frac{\tan \left(\frac{A-B}{2}\right)}{\tan \left(\frac{A+B}{2}\right)}$
Assume $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
Consider the LHS of the equation $\frac{a-b}{a+b}=\frac{\tan \left(\frac{A-B}{2}\right)}{\tan \left(\frac{A+B}{2}\right)}$.
$\mathrm{LHS}=\frac{a-b}{a+b}$
$=\frac{k(\sin A-\sin B)}{k(\sin A+\sin B)}$
$\because \sin A-\sin B=2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right), \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\therefore \mathrm{LHS}=\frac{2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)}{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}$
$=\frac{\tan \left(\frac{A-B}{2}\right)}{\tan \left(\frac{A+B}{2}\right)}=\mathrm{RHS}$
Hence proved.