In triangle ABC, prove the following:
$\frac{c}{a-b}=\frac{\tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)}{\tan \left(\frac{A}{2}\right)-\tan \left(\frac{B}{2}\right)}$
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$ ...(1)
We need to prove:
$\frac{c}{a-b}=\frac{\tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)}{\tan \left(\frac{A}{2}\right)-\tan \left(\frac{B}{2}\right)}$
Consider
$\mathrm{LHS}=\frac{c}{a-b}$
$=\frac{k \sin C}{k(\sin A-\sin B)} \quad$ (using (1))
$=\frac{2 \sin \frac{C}{2} \cos \frac{C}{2}}{2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)}$
$=\frac{\sin \left(\frac{\pi-(A+B)}{2}\right) \cos \frac{C}{2}}{\sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)} \quad(\because \mathrm{A}+\mathrm{B}+\mathrm{C}=\pi)$
$=\frac{\cos \frac{C}{2} \cos \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)}$
$=\frac{\cos \frac{C}{2}}{\sin \left(\frac{A-B}{2}\right)} \quad \ldots(2)$
RHS $=\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan \frac{A}{2}-\tan \frac{B}{2}}$
$=\frac{\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}+\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}}{\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}-\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}}$
$=\frac{\sin \frac{A}{2} \cos \frac{B}{2}+\sin \frac{B}{2} \cos \frac{A}{2}}{\sin \frac{A}{2} \cos \frac{B}{2}-\sin \frac{B}{2} \cos \frac{A}{2}}$
$=\frac{\sin \left(\frac{A+B}{2}\right)}{\sin \left(\frac{A-B}{2}\right)}$
$=\frac{\sin \left(\frac{\pi-\mathrm{C}}{2}\right)}{\sin \left(\frac{A-B}{2}\right)}$
$=\frac{\cos \frac{C}{2}}{\sin \left(\frac{A-B}{2}\right)}$
$=\mathrm{LHS} \quad($ from $(2))$
Hence proved.