Question:
In triangle ABC, prove the following:
$b \sin B-c \sin C=a \sin (B-C)$
Solution:
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
Then,
Consider the LHS of he equation $b \sin B-c \sin C=a \sin (B-C)$.
$\mathrm{LHS}=k \sin B \sin B-k \sin C \sin C$
$=k\left(\sin ^{2} B-\sin ^{2} C\right)$
$=k[\sin (B+C) \sin (B-C)]$ $\left[\because \sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}=\sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C})\right]$
$=k[\sin (\pi-\mathrm{A}) \sin (B-C)]$$[\because \mathrm{A}+\mathrm{B}+\mathrm{C}=\pi]$
$=k \sin A \sin (B-C) \quad[\because a=k \sin A]$
$=a \sin (B-C)=\mathrm{RHS}$
Hence proved.