In triangle ABC, prove the following:
$\frac{c}{a+b}=\frac{1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}{1+\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}$
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$
We need to prove:
$\frac{c}{a+b}=\frac{1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}{1+\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}$
Consider
$\mathrm{LHS}=\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}$
$=\frac{\mathrm{ksin} \mathrm{C}}{\mathrm{k}(\sin \mathrm{A}+\sin \mathrm{B})} \quad($ using $(1))$
$=\frac{2 \sin \frac{\mathrm{C}}{2} \cos \frac{\mathrm{C}}{2}}{2 \sin \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)}$
$=\frac{\sin \frac{\mathrm{C}}{2} \cos \left(\frac{\pi-(\mathrm{A}+\mathrm{B})}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}$ $(\because A+B+C=\pi)$
$=\frac{\sin \frac{\mathrm{C}}{2} \sin \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)}{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}$
$=\frac{\sin \frac{\mathrm{C}}{2}}{\cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)} \ldots(2)$
$\mathrm{RHS}=\frac{1-\tan \frac{A}{2} \tan \frac{B}{2}}{1+\tan \frac{A}{2} \tan \frac{B}{2}}$
$=\frac{1-\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} \frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}}{1+\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} \frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}}$
$=\frac{\cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}+\sin \frac{A}{2} \sin \frac{B}{2}}$
$=\frac{\cos \left(\frac{A+B}{2}\right)}{\cos \left(\frac{A-B}{2}\right)}$
$=\frac{\cos \left(\frac{\pi-\mathrm{C}}{2}\right)}{\cos \left(\frac{A-B}{2}\right)}$ $(\because A+B+C=\pi)$
$=\frac{\sin \frac{\mathrm{C}}{2}}{\cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)}=\mathrm{LHS}$ from (2)
Hence proved.