In triangle ABC, prove the following:
$\frac{a+b}{c}=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}$
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$ ...(1)
Then,
Consider the LHS of the equation $\frac{a+b}{c}=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}$.
$\mathrm{LHS}=\frac{a+b}{c}$
$=\frac{k \sin A+k \sin B}{k \sin C} \quad($ using $(1))$
$=\frac{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{2 \sin \frac{C}{2} \cos \frac{C}{2}}$
$=\frac{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2} \cos \left(\frac{\pi-(A+B)}{2}\right)} \quad(\because A+B+C=\pi)$
$=\frac{\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2} \sin \left(\frac{A+B}{2}\right)}$
$=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}=\mathrm{RHS}$
Hence proved.