In triangle ABC, prove the following:
$a \cos A+b \cos B+c \cos C=2 b \sin A \sin C=2 c \sin A \sin B$
Let $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k \quad \ldots$ (1)
Consider the LHS of the equation $a \cos A+b \cos B+c \cos C$.
$a \cos A+b \cos B+c \cos C=k(\sin A \cos A+\sin B \cos B+\sin C \cos C)$
$=\frac{k}{2}(2 \sin A \cos A+2 \sin A \cos A+2 \sin C \cos C)$
$=\frac{k}{2}(\sin 2 A+\sin 2 B+\sin 2 C)$
$=\frac{k}{2}[2 \sin (A+B) \cos (A-B)+2 \sin C \cos C]$
$=\frac{k}{2}[2 \sin (\pi-C) \cos (A-B)+2 \sin C \cos C]$
$=\frac{k}{2}[2 \sin C \cos (A-B)+2 \sin C \cos C]$
$=\frac{2 k \sin C}{2}[\cos (A-B)+\cos C]$
$=k \sin C[\cos (A-B)+\cos \{\pi-(\mathrm{A}+\mathrm{B})\}]$
$=k \sin C[\cos (A-B)-\cos (\mathrm{A}+\mathrm{B})]$
$=k \sin C[2 \sin A \sin B]$
$=2 k \sin A \sin B \sin C \quad \ldots(1)$
Now,
on putting $k \sin C=C$ in equation (1), we get:
$2 c \sin A \sin B$
and on putting $k \sin B=b$ in equation (1), we get:
$2 b \sin A \sin C$
So, from (1), we have
$a \cos A+b \cos B+c \cos C=2 b \sin A \sin C=2 c \sin A \sin B$
Hence proved.