In the given figure, we have AB || CD || EF. If AB = 6 cm, CD = x cm, EF = 10 cm, BD = 4 cm and DE = y cm, Calculate the values of x and y.
In the given figure, we have AB || CD || EF. If AB = 6 cm, CD = x cm, EF = 10 cm, BD = 4 cm and DE = y cm, Calculate the values of x and y.
It is given that $A B\|C D\| E F$.
$A B=6 \mathrm{~cm}, C D=x \mathrm{~cm}$ and $E F=10 \mathrm{~cm}$
We have to calculate the values of $x$ and $y$.
In $\triangle A D B$ and $\triangle D E F$, we have
$\angle A D B=\angle E D F \quad$ (Vertically opposite angles)
$\Rightarrow \angle A B D=\angle D E F \quad$ (Alternate interior angles)
So $\triangle A D B \sim \triangle D E F$
EFAB=DEDB
$\frac{10 \mathrm{~cm}}{6 \mathrm{~cm}}=\frac{y}{4 \mathrm{~cm}}$
$6 \mathrm{~cm} \times y=40 \mathrm{~cm}$
$y=\frac{40 \mathrm{~cm}}{6 \mathrm{~cm}}$
$y=6.67 \mathrm{~cm}$
Similarly in $\triangle A B E$ we have
$\mathrm{DCAB}=\mathrm{DEBE} \Rightarrow \mathrm{x} 6=\mathrm{y} 4+\mathrm{y} \Rightarrow \mathrm{x}=6 \mathrm{y} 4+\mathrm{y} \Rightarrow \mathrm{x}=6 \times 6.674+6.67 \Rightarrow \mathrm{x}=3.75$
Hence, $\mathrm{x}=3.75 \mathrm{~cm}$ and $y=6.67 \mathrm{~cm}$