In the given figure, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠SPR = 135º and ∠PQT = 110º, find ∠PRQ.
Solution:
It is given that,
$\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$
$\angle S P R+\angle Q P R=180^{\circ}($ Linear pair angles $)$
$\Rightarrow 135^{\circ}+\angle Q P R=180^{\circ}$
$\Rightarrow \angle Q P R=45^{\circ}$
Also, $\angle \mathrm{PQT}+\angle \mathrm{PQR}=180^{\circ}$ (Linear pair angles)
$\Rightarrow 110^{\circ}+\angle \mathrm{PQR}=180^{\circ}$
$\Rightarrow \angle \mathrm{PQR}=70^{\circ}$
As the sum of all interior angles of a triangle is $180^{\circ}$, therefore, for $\triangle \mathrm{PQR}$,
$\angle \mathrm{QPR}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$
$\Rightarrow 45^{\circ}+70^{\circ}+\angle \mathrm{PRQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PRQ}=180^{\circ}-115^{\circ}$
$\Rightarrow \angle \mathrm{PRQ}=65^{\circ}$