In the given figure, ∠Q > ∠R, PA is the bisector of ∠QPR and PM ⊥ QR.
Prove that ∠APM = ½(∠Q – ∠R).
Given In $\triangle P Q R, \angle Q>\angle R, P A$ is the bisector of $\angle Q P R$ and $P M \perp Q R$.
To prove $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$
Proof Since, $P A$ is the bisector of $\angle Q P R$.
$\therefore$ $\angle Q P A=\angle A P R$ $\ldots$ (i)
In $\triangle P Q M$, $\angle P Q M+\angle P M Q+\angle Q P M=180^{\circ}$
[by angle sum property of a triangle]
$\Rightarrow$ $\angle P Q M+90^{\circ}+\angle Q P M=180^{\circ} \quad\left[\because P M \perp Q R \Rightarrow \angle P M Q=90^{\circ}\right]$
$\Rightarrow$ $\angle P Q M=90^{\circ}-\angle Q P M$ ....(ii)
$\ln \Delta P M R_{1}$
$\angle P M R+\angle P R M+\angle R P M=180^{\circ}$
[by angle sum property of a triangle]
$\Rightarrow$ $90^{\circ}+\angle P R M+\angle R P M=180^{\circ} \quad\left[\because P M \perp Q R \Rightarrow \angle P M R=90^{\circ}\right]$
$\Rightarrow$ $\angle P R M=180^{\circ}-90^{\circ}-\angle R P M$
$\Rightarrow$ $\angle P R M=90^{\circ}-\angle R P M$ ....(iii)
On subtracting Eq. (iii) from Eq. (ii), we get
$\angle Q-\angle R=\left(90^{\circ}-\angle Q P M\right)-\left(90^{\circ}-\angle R P M\right)$
[where $\angle P Q M=\angle Q$ and $\angle P R M=\angle R$ ]
$\Rightarrow \quad \angle Q-\angle R=\angle R P M-\angle Q P M$
$\Rightarrow \quad \angle Q-\angle R=[\angle R P A+\angle A P M]-[\angle Q P A-\angle A P M]$ ...(iv)
$\Rightarrow \quad \angle Q-\angle R=\angle Q P A+\angle A P M-\angle Q P A+\angle A P M$
[by using Eq. (i)]
$\Rightarrow \quad \angle Q-\angle R=2 \angle A P M$
$\therefore$ $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$
Hence proved.