In the given figure, POQ is a diameter and PQRS is a cyclic quadrilateral.

Question:

In the given figure, POQ is a diameter and PQRS is a cyclic quadrilateral. If PSR = 150°, find ∠RPQ.

 

Solution:

In cyclic quadrilateral PQRS, we have:
∠PSR + ∠PQR = 180°
⇒ 150° + ∠PQR = 180°
⇒ ∠PQR = (180° – 150°) = 30°
∴ ∠PQR = 30°                ...(i)
Also, ∠PRQ = 90° (Angle in a semicircle)                 ...(ii)
Now, in ΔPRQ, we have:
∠PQR + ∠PRQ + ∠RPQ = 180°
⇒ 30° + 90° + ∠RPQ = 180°   [From(i) and (ii)]
⇒ ∠RPQ = 180° – 120° = 60°
∴ ∠RPQ = 60°

Leave a comment