In the given figure, $P A, Q B$ and $R C$ are perpendicular to $A C$. If $A P=x, Q B=z, R C=y, A B=a$ and $B C=b$, show that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.
In $\triangle P A C$ and $\triangle Q B C$, we have :
$\angle A=\angle B \quad\left(\right.$ Both angles are $\left.90^{\circ}\right)$
$\angle P=\angle Q \quad$ (Correspond ing angles)
and
$\angle C=\angle C \quad$ (Common angles)
Therefore, $\triangle P A C \sim \triangle Q B C$
$\frac{A P}{B Q}=\frac{A C}{B C}$
$\Rightarrow \frac{x}{z}=\frac{a+b}{b}$
$\Rightarrow a+b=\frac{b x}{z} \quad \ldots(1)$
In $\triangle R C A$ and $\triangle Q B A$, we have :
$\angle C=\angle B \quad\left(\right.$ Both angles are $\left.90^{\circ}\right)$
$\angle R=\angle Q \quad$ (Correspond ing angles)
and
$\angle A=\angle A \quad$ (Common angles)
Therefore, $\triangle R C A \sim \triangle Q B A$
$\frac{R C}{B Q}=\frac{A C}{A B}$
$\Rightarrow \frac{y}{z}=\frac{a+b}{a}$
$\Rightarrow a+b=\frac{a y}{z} \quad \ldots(2)$
From equation (1) and (2), we have:
$\frac{b x}{z}=\frac{a y}{z}$
$\Rightarrow b x=a y$
$\Rightarrow \frac{a}{b}=\frac{x}{y} \quad \ldots(3)$
Also,
$\frac{x}{z}=\frac{a+b}{b}$
$\Rightarrow \frac{x}{z}=\frac{a}{b}+1$
Using the value of $\frac{a}{b}$ from equation $(3)$, we have:
$\Rightarrow \frac{x}{z}=\frac{x}{y}+1$
Dividing both sides by $x$, we get:
$\frac{1}{z}=\frac{1}{y}+\frac{1}{x}$
$\therefore \frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
This completes the proof.