In the given figure, O is the centre of two concentric circles of radii 5 cm and 3 cm. From an external point P tangents PA and PB are drawn to these circles. If PA = 12 cm then PB is equal to
(a) $5 \sqrt{2} \mathrm{~cm}$
(b) $3 \sqrt{5} \mathrm{~cm}$
(c) $4 \sqrt{10} \mathrm{~cm}$
(d) $5 \sqrt{10} \mathrm{~cm}$
(c) $4 \sqrt{10} \mathrm{~cm}$
Given, $O P=5 \mathrm{~cm}, P A=12 \mathrm{~cm}$
Now, j oin $O$ and $B$.
Then, $O B=3 \mathrm{~cm}$.
Now, $\angle O A P=90^{\circ}$ (Tangents drawn from an external point are perpendicular
to the radius at the point of contact)
Now, in $\triangle O A P:$ :
$O P^{2}=O A^{2}+P A^{2}$
$\Rightarrow O P^{2}=5^{2}+12^{2}$
$\Rightarrow O P^{2}=25+144$
$\Rightarrow O P^{2}=169$
$\Rightarrow O P=\sqrt{169}$
$\Rightarrow O P=13$
Now, in $\triangle O B P$ :
$P B^{2}=O P^{2}-O B^{2}$
$\Rightarrow P B^{2}=13^{2}-3^{2}$
$\Rightarrow P B^{2}=169-9$
$\Rightarrow P B^{2}=160$
$\Rightarrow P B=\sqrt{160}$
$\Rightarrow P B=4 \sqrt{10} \mathrm{~cm}$