In the given figure, $/ \| m$
(i) Name three pairs of similar triangles with proper correspondence; write similarities.
(ii) Prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{RQ}}$
(i) Three pair of similar triangles are-
$\Delta A B K-\Delta P Q K$(AAA Similarity)
$\Delta C B K-\Delta R Q K$(AAA Similarity)
$\Delta A C K-\Delta P R K$(AAA Similarity)
(ii) Since the pair of similar triangles mentioned above can give us the desired result. The ratios of the corresponding side of the similar triangle are equal.
So,
$\triangle \mathrm{ABK} \approx \triangle \mathrm{PQK}$
Therefore,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AK}}{\mathrm{PK}}=\frac{\mathrm{BK}}{O K} \ldots \ldots$ equation (1)
Similarly in $\triangle \mathrm{CBK} \approx \triangle \mathrm{RQK}$,
$\frac{\mathrm{CB}}{\mathrm{RQ}}=\frac{\mathrm{CK}}{\mathrm{RK}}=\frac{\mathrm{BK}}{Q K}$.... equation (2)
Similarly $\triangle \mathrm{ACK} \approx \Delta \mathrm{PRK}$,
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AK}}{\mathrm{PK}}=\frac{\mathrm{CK}}{\mathrm{RK}} \ldots \ldots$ equation (3)
From the above equations 1 and 2 we have,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AK}}{\mathrm{PK}}=\frac{\mathrm{BK}}{Q K}=\frac{\mathrm{CB}}{\mathrm{RQ}}=\frac{\mathrm{CK}}{\mathrm{RK}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{CB}}{R Q}$ ....eqaution (4)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CB}}=\frac{\mathrm{PQ}}{R Q}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CB}}+\mathrm{l}=\frac{\mathrm{PQ}}{R Q}+1$
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{\mathrm{PR}}{R Q}$
Combining it with equation (4)
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{CB}}{R Q}=\frac{A B}{P Q}$
hence proved
$\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{RQ}}$