Question:
In the given figure, if AB || CD, CD || EF and y : z = 3 : 7, x = ?
(a) 108°
(b) 126°
(c) 162°
(d) 63°
Solution:
(b) 126°
Let $y=(3 a)^{\circ}$ and $z=(7 a)^{\circ}$
Let the transversal intersect AB at P, CD at O and EF at Q.
Then, we have:
$\angle C O P=\angle D O F=y \quad$ [Vertically-Opposite Angles]
$\therefore \angle O Q F+\angle D O Q=180^{\circ} \quad$ [Consecutive Interior Angles]
$\Rightarrow 3 a+7 a=180^{\circ}$
$\Rightarrow 10 a=180^{\circ}$
$\Rightarrow a=18^{\circ}$
$\therefore y=3 \times 18^{\circ}=54^{\circ}$
Also,
$\angle A P O+\angle C O P=180^{\circ}$
$\Rightarrow x+54^{\circ}=180^{\circ}$
$\Rightarrow x=126^{\circ}$