In the given figure, each of PA, QB, RC and SD is perpendicular to l. If AB = 6 cm, BC = 9 cm, CD = 12 cm and PS = 36 cm, then determine PQ, QR and RS.
Given $A B=6 \mathrm{~cm}, B C=9 \mathrm{~cm}, C D=12 \mathrm{~cm}, A D=27 \mathrm{~cm}$ and $P S=36 \mathrm{~cm}$
PA, QB, RC and SD is perpendicular to l,
Therefore, by the corollory of basic proportionality theorem, we have
$\frac{A B}{A D}=\frac{P Q}{P S}$
$\frac{B C}{A D}=\frac{Q R}{P S}$
$\frac{C D}{A D}=\frac{R S}{P S}$
$\Rightarrow \frac{A B}{A D}=\frac{P Q}{P S}$
$\frac{6}{27}=\frac{P Q}{36}$
$\frac{6 \times 36}{27}=P Q$
$P Q=8$
Now for QR
$\frac{B C}{A D}=\frac{Q R}{P S}$
$\frac{9}{27}=\frac{Q R}{36}$
$\frac{9 \times 36}{27}=Q R$
$Q R=12$
Again for RS
$\frac{C D}{A D}=\frac{R S}{P S}$
$\frac{12}{27}=\frac{R S}{36}$
$\frac{12 \times 36}{27}=R S$
$R S=16$
Hence, the values of $P Q, Q R$ and $R S$ are $8,12,16$ respectively.